Microstructure evolution of Solid Oxide Fuel Cell anodes characterized by persistent homology
نویسندگان
چکیده
Uncovering microstructure evolution mechanisms that accompany the long-term operation of solid oxide fuel cells is a fundamental challenge in designing more durable energy system for future. To date, study cell stack degradation has focused mainly on electrochemical performance and, rarely, averaged microstructural parameters. Here we show an alternative approach which three-dimensional features studied using electron tomography coupled with topological data analysis. The latter produces persistent images before and after electrodes. Those unveil new insight into process three involved phases: nickel, pores, yttrium-stabilized zirconium.
منابع مشابه
Phase field modeling of microstructure evolution of electrocatalyst-infiltrated solid oxide fuel cell cathodes
Articles you may be interested in Microstructural coarsening effects on redox instability and mechanical damage in solid oxide fuel cell anodes Redox instability, mechanical deformation, and heterogeneous damage accumulation in solid oxide fuel cell anodes J. Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells Appl. Synthesis and calorimetric studies of oxide...
متن کاملA new approach to microstructure optimization of solid oxide fuel cell electrodes
Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...
متن کاملQuantifying the Role of Cerium Oxide as a Catalyst in Solid Oxide Fuel Cell Anodes
Title of Document: QUANTIFYING THE ROLE OF CERIUM OXIDE AS A CATALYST IN SOLID OXIDE FUEL CELL ANODES Steven C. DeCaluwe, Doctor of Philosophy, 2009 Directed By: Associate Professor Gregory S. Jackson, Department of Mechanical Engineering Solid Oxide Fuel Cells (SOFCs) are an important electrochemical power conversion device, due largely to their high efficiencies and ability to directly oxidiz...
متن کاملRedox Stable Anodes for Solid Oxide Fuel Cells
*Correspondence: Fanglin Chen, Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA e-mail: [email protected] Solid oxide fuel cells (SOFCs) can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conv...
متن کاملImportance of Anode Microstructure in Modeling Solid Oxide Fuel Cells
A one-dimensional button-cell model is developed and applied to explore the influence of anode microstructure on solid oxide fuel cell (SOFC) performance. The model couples porous-media gas transport and elementary electrochemical kinetics within a porous Ni-YSZ cermet anode, a dense YSZ electrolyte membrane and a composite LSM-YSZ cathode. In all cases the fuel is humidified H2 and air is the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy and AI
سال: 2023
ISSN: ['2666-5468']
DOI: https://doi.org/10.1016/j.egyai.2023.100256